The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1.
نویسندگان
چکیده
A Pseudomonas putida strain, strain GB-1, oxidizes Mn2+ to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn2+ oxidation and/or secretion of the Mn2+-oxidizing activity were identified. Preliminary analysis of the Tn5 insertion site in one of the nonoxidizing mutants suggested that a multicopper oxidase-related enzyme is involved in Mn2+ oxidation. The insertion site in another mutant was preliminarily identified as a gene involved in the general protein secretion pathway. Two mutants defective in Mn2+-oxidizing activity also secreted porphyrins into the medium and appeared to be derepressed for pyoverdine production. These strains were chosen for detailed analysis. Both mutants were shown to contain Tn5 insertions in the ccmF gene, which is part of the cytochrome c maturation operon. They were cytochrome oxidase negative and did not contain c-type cytochromes. Complementation with part of the ccm operon isolated from the wild type restored the phenotype of the parent strain. These results indicate that a functional ccm operon is required for Mn2+ oxidation in P. putida GB-1. A possible relationship between porphyrin secretion resulting from the ccm mutation and stimulation of pyoverdine production is discussed.
منابع مشابه
cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1.
Pseudomonas putida GB-1-002 catalyzes the oxidation of Mn2+. Nucleotide sequence analysis of the transposon insertion site of a nonoxidizing mutant revealed a gene (designated cumA) encoding a protein homologous to multicopper oxidases. Addition of Cu2+ increased the Mn2+-oxidizing activity of the P. putida wild type by a factor of approximately 5. The growth rates of the wild type and the muta...
متن کاملManganese (Mn) Oxidation Increases Intracellular Mn in Pseudomonas putida GB-1
Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or ...
متن کاملPyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1
When iron-starved, the Mn(II)-oxidizing bacteria Pseudomonas putida strains GB-1 and MnB1 produce pyoverdines (PVDGB-1 and PVDMnB1), siderophores that both influence iron uptake and inhibit manganese(II) oxidation by these strains. To explore the properties and genetics of a PVD that can affect manganese oxidation, LC-MS/MS, and various siderotyping techniques were used to identify the peptides...
متن کاملc-type cytochromes and manganese oxidation in Pseudomonas putida MnB1.
Pseudomonas putida MnB1 is an isolate from an Mn oxide-encrusted pipeline that can oxidize Mn(II) to Mn oxides. We used transposon mutagenesis to construct mutants of strain MnB1 that are unable to oxidize manganese, and we characterized some of these mutants. The mutants were divided into three groups: mutants defective in the biogenesis of c-type cytochromes, mutants defective in genes that e...
متن کاملIdentification of a two-component regulatory pathway essential for Mn(II) oxidation in Pseudomonas putida GB-1.
Bacterial manganese(II) oxidation has a profound impact on the biogeochemical cycling of Mn and the availability of the trace metals adsorbed to the surfaces of solid Mn(III, IV) oxides. The Mn(II) oxidase enzyme was tentatively identified in Pseudomonas putida GB-1 via transposon mutagenesis: the mutant strain GB-1-007, which fails to oxidize Mn(II), harbors a transposon insertion in the gene ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 10 شماره
صفحات -
تاریخ انتشار 1998